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Unsteady interaction of a shock wave with 
a cellular vortex field 

By J. E. WERNER 
School of Aeronautics and Astronautics, New York University 

(Received 28 May 1960 and in revised form 16 November 1960) 

The transient effects generated when a shock wave is suddenly disturbed by a 
field of cellular vortices have been studied. Both the pressure disturbance on the 
shock and the local shock velocity are found to be strong functions of the cell 
geometry. Disturbances are resolved into transient components and sinusoidal 
components of constant amplitude. The transients are found to die out as t-3’2, 
t being the interaction time, except for one particular case of the cell geometry 
for which they diminish as t-lI2. Furthermore, the analysis indicates that the 
initial magnitude of the transient components may be quite appreciable in com- 
parison with the sinusoidal component. The theory is extended to treat the 
convection through the shock of a single column of vortex cells. 

1. Introduction 
It has been demonstrated (Kovasznay 1953, Chu & Kovasznay 1958) that 

an arbitrary weak disturbance in a uniform compressible flow can be decomposed 
into component modes of vorticity, sound and entropy. As a consequence of 
linearization these fields have the important property of being independent of 
each other in the absence of natural boundaries. Across a shock-wave, however, 
the presence of large gradients in the basic flow make it necessary to retain the 
non-linearity of the fundamental equations. This results in a coupling of modes. 
In  particular a first-order vorticity fluctuation, upon passing through a shock 
front, generates sound and entropy fields behind the shock (Ribner 1953). At 
the same time, local displacement of the shock occurs, which means that the 
analytical problem is of the nature of an unsteady boundary value problem with a 
free boundary. 

The specific model employed here is illustrated in figure 1. A two-dimensional 
cellular vortex field with a discrete front is convected into an initially plane, 
normal shock-wave. The objective of the analysis is to investigate the transient 
behaviour of the shock front and the pressure disturbance generated on the down- 
stream face of the shock. 

Interaction studies of a similar nature have been carried out by Ribner 
(1953), Moore (1953) and Chang (1957). These differ from the present analysis 
in that they treat the case of a single harmonic disturbance of infinite extent in 
space. Such a model can be reduced to a steady state problem by a simple trans- 
lation of the co-ordinate system. It therefore lacks the transient or ‘initial’ 
behaviour of the present model. On the other hand, the treatment by Ram & 
Ribner (1957) of shock interaction with a single vortex exhibits transient 
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behaviour only. The model considered here occupies a position between the two 
in that it is comprised of transients which subside, leaving a completely periodic 
behaviour which may be compared with the results of Ribner (1953), Moore 
(1953) and Chang (1957). That transient behaviour is significant is borne out by 
the analysis which indicates that transient components of pressure may in some 
cases be an order of magnitude larger than the eventual steady-state amplitude. 
Thus, transients should be considered in any estimates of disturbances generated 
by an unsteady interaction process. 

Y 

I I 

vortex shock 
front position 

FIGURE 1. Cellular vortex field. 

2. Fundamental equations 
The flow field is described in co-ordinates fixed at the mean position of the 

shock as indicated in figure 1. To represent fluctuations, 6( ), of pressure P, 
densityppT, velocity V and entropy 2 the following non-dimensional variables are 

employed : p = 6P/yP,  

P = 6PTIE 
0- = sc/c,, . -  

.6U .sv sv v = iu+jw = i-+j-- = -, 
a a a  

where a is the speed of sound in the basic flow, C, is the specific heat at constant 
pressure, and y is the ratio of specific heats. Basic flow quantities are denoted by 
(-). In  terms of these variables the linearized equations of motion for the region 
behind the shock are, denoting this region by ( )1, 

continuity, 

momentum, 

energy , 

state, 
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Here r = a,t and DID7 is the linearized Stokes derivative: 
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where M, = UJa,. 

3. Specification of upstream disturbance 

tion in the oncoming flow is assumed: 
Denoting the region ahead of the shock by ( )o, the following velocity perturba- 

uo(n, y. t )  = (uo1 sin ~ ( t 7 , t  - 5) sin Ay, 

K 
uUu(x,y,t)  = -- luol cosK(i70Dt-X)COShy, 

h (3.1) 

The field represented by this perturbation has the cellular structure illustrated 
in figure 1, which shows the streamlines as they would appear to an observer 
moving with the basic flow. In  the interior of the cellular pattern i t  can be veri- 
fied, from the linearized equations of motion, that to the first order 

(3.2) 

The region near the leading edge of the vortex field requires special considera- 
tion. The pressure on the upstream face of the leading edge is second-order in 
magnitude. On the downstream face the pressure is identically zero. To maintain 
this pressure unbalanced a thin plate is imagined held at the leading edge of 
the vortex field until the time t = 0, at which instant it is suddenly removed. 
Immediately after withdrawal of the plate the vortex field is convected into the 
shock. 

Once the vortex front passes through the shock no further flow modification 
generated at the front can propagate upstream ahead of the shock. This means 
that the presence of a vortex front no longer affects the disturbance being con- 
vected into the shock from upstream. But at the instant the plate is removed the 
vortex front is just ahead of the shock. It therefore remains to consider the 
magnitude of the initial disturbance generated during the infinitesimal time 
interval before the vortices pass through the shock. That the flow modifications 
generated in this interval may be neglected can be shown by the following con- 
siderations. Locally, the instantaneous removal of the plate and the resulting 
pressure unbalance are roughly equivalent to the diaphragm shattering in a 
shock tube. If the pressure difference across such a diaphragm is represented by 
the non-dimensionalized pressure term p = SP/yP, it  can readily be shown by 
linearization of the Rankine-Hugoniot equations that, for small values of p ,  the 
flow velocity behind the resulting weak shock would be, to the first approximation 

Po = po = (Tg = 0. 

u = +p. (3.3) 

This indicates that the velocity field generated by removing the plate is initially 
of the same order of magnitude as the pressure unbalance. Since this latter term 
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is of second order in magnitude, the initial velocity disturbance is also and may 
be neglected. The disturbance specified by equations (3.1) and (3.2) is thus correct 
to the first order. 

4. Boundary conditions 
Equations (2.1) supply the differential relations satisfied at a point downstream 

of the shock. To complete the formulation, boundary conditions appropriate to 
these equations are required. These are provided by the values of p+, p+, v+ and 
cr+, on the downstream face of the shock, which are in turn related to p-, p-, v- 
and cr-, on the upstream face, through the Rankine-Hugoniot equations. To 
arrive at the specific relationships a local element of the shock front is isolated as 
shown in figure 2. Its displacement from its undisturbed position is denoted by 
$(y, 7) and its velocity with respect to the upstream flow field by V- + ia, $r. 

The angle between the shock and the y-axis is assumed small and equal to  q9g. 
These quantities are substituted into the Rankine-Hugoniot equations which are 
then linearized. The result is a set of simultaneous equations for p+,p+, v+, cr+ 
in terms of p-, p-, v-, CT-. 

Shock 

' I  I 

/ I  
FIGURE 2. Local flow conditions at shock. 

The procedure has been carried out by Chang (1957) for the general case of 
interactions with an oblique shock. Specializing Chang's results for the present 
case the following equations hold at the shock front: 

(4.1 A) 

(4.1 B) 

(4.1 C) 

(4.1 D) 
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n11 = --(7J-1) ~ 1 - i j o ! i j 1 ) 2 ( i j l / i j o ) ~ l ,  

n21 = --iY1(1--ijO/ijl) [2+(?-1) ( ~ - - i j l / i j O ) ~ ~ 1 / ( 1 - - ~ , 2 ) ~  
n31 = (1--ijO/ij1)[1+M,2+(Y--) ( 1 - P l / i j o ) ~ , 2 1 / ( 1 - ~ ~ ) ~  
n41 = - (1 -ij1/Po)~1. 

Along with the specified velocity perturbations a t  the shock, these equations 
also include derivatives of the shock displacement. Since displacement is 
determined only after solution of the flow problem, the shock constitutes a free 
boundary of the downstream region. 

5. The general solution in the region behind the shock 
To isolate the pressure p1 the divergence of the momentum equation, (2.1), 

is formed and divv, eliminated by introducing the continuity relation. The 
expanded result is 

In  view of the particular time-dependence of the disturbance a solution will 
be sought by the method of Laplace-transformation. Introducing the pressure 
transform 

the transform of equation (5.1) is 

$i(X, Y, 8) = L b 1 ( X ,  Y, 711 = /owPl(x, Y, 7 )  e-87d7, (5.2) 

(5.3) 

A general solution of equation (5.3) is obtainable by separation of variables, 

p1(s) = (A, sin h y  + A,  COB hy) 

giving 

x (Bl exp [{Mls - (s2 + h2p2)*} x/p2] + B, exp[{Mls + (s2 + h2p2)~}x/p2]), (5.4) 
where p2 = l-M,. 

6. Application of boundary conditions 

region we must have 
To satisfy the condition that no disturbances originate in the downstream 

(6.1) B, = 0. 

Additional boundary conditions are furnished by equations (4.1 A-D) which 
must be satisfied on the shock front. The displacement derivatives +7, +v are 
first eliminated by cross-differentiation. Then, with the aid of the fundamental 
equations (2.1) to  eliminate derivatives of u+ and v+, the variable p+ is isolated 
from the remaining equations to obtain a differential expression for p+ which 
must be satisfied by the solution for p,. This is 
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where A = H21/n31? = Q 2 3 - A Q 3 3 ,  = n21/n41? 

D = 023, E = - I 1 2 1 Q 4 4 / I I d l .  

4(7) is obtained by direct substitution of u- = uo(O, y, 7 )  etc., into the right-hand 
side of (6.1), giving 

(6.3) 
where 

&TI = luo l  CAsinWuo/a1) + &S(~7n~/a1)1, 
$o = (AMl/C) (Dh2+ E ~ : o ~ / a , )  - B ~ ~ ( u ~ / a , ) ~ ,  

and 6(K7co/a1) represents the Dirac delta function arising from discontinuities 
in the derivatives of u- and v-. The absence of cosine terms in equation (6.3) 
immediately allows us to set A ,  = 0. The solution must then be of the form 

(6.4A) 

or in its inverted form 

P l ( Z , Y , 7 )  = i& 1 

$1 = AMl Dh2/C - $o, 

fjl(s) = F(s)  exp[(Mls - (82 + h2p2)*} x/p2] sin hy, 

c+iw 

c-im 
P(s) exp [(Mls - (s2 + h2p2)*} (x/pz) + s7] ds sin hy. 

(6.4B) 

Substituting equation (6.4 B) into the boundary condition-equation (6.2)-and 
setting x = 0 an equation is obtained for F(s)  which may be put into the form 

(6.5) 
(1 + A ) f y ( A M l / C )  h2 - AS(s - (s2 + h2p2)*) 

F(s)  = 
(1x2) 8 4  + { 2 ( A M l / C ) - ~ } h 2 s ~ M l ~ C ) z ~ .  

From equation (6.4 B) it is evident that P(s)  is the transform of p+(y7). 

7. Inversion of F(s) 
With the aid of standard tables and the convolution theorem the inversion of 

F(s)  is achieved in a straightforward manner. The resulting expression however 
is long and unwieldy. A considerable reduction in the size and number of terms 
is obtained if we note that over a range of Mach number up to about six, the 
parameter A is very nearly equal to - 1. If this approximation is introduced, 
equation (6.5) reduces to the simpler form 

where p2 = - M,2/2C(2M1 + Cp2), JPz being positive. Finally, introducing the 
parameter a = Vo/ul and the explicit form of $(s), the inversion of F ( s )  is found, 
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8. Solution for large values of AFT 
1 may be determined by the 

method of steepest descents (Jeffreys & Jeffreys 1950). For a line integral in the 
complex domain of the form 

The asymptotic behaviour of I, and IF for Apr 

where f (6) is analytic with a large positive real part, and R is the path of steepest 
descent off (s), a first approximation is given by 

(8.2) 

so being the location of a saddle point off(s) and the angle with the positive real 
axis made by R as it passes through so. 

I 

FIGURE 3. Path of steepest descent for evaluation of I ,  for Apr + 1. 

The Laplace representation of I, may be written in the form of equation (8.1) 

L denoting a line from C- i co  to C+ ioo with C > Im[a]. As shown in figure 3 
L may be deformed so that part of it coincides with the paths R,, R, of steepest 
descent for which equation (8.2) holds. Integration over the remaining parts 
R,, R4 may be carried out exactly by residue theory. The result, valid for large 
Apr and C X K / A ~  + I, is: 

(2lnP cos [ A p  - cos-1( l / A p )  +in-] Ia = +V,sin(K~ot)+v2cos ( d o t ) ,  (8.4) 
(a/C/Ap),- 1 (+TP 
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where 

A similar expression holds for IF except that p/,u is always greater than unity. 
Substituting these results into equations (7.2) we obtain the result for aK/h,u $: 1, 

COS [APT - C0S-1(1/h,k7) +in] [P+(W)I ,+~ - - J: [ c B ~ 2  I ~~ Ca 
luol sin hy 7T p2-,U2 (aK/h,Lhpx] @P7+ 

~- 

- P -trans + P a m  - 
(uoI sinhy luol sinhy 

FIUURE 4. Comparison of present theory with Ribner (1953) for determination - -  of ampli- 
tude of P + ~ ,  showing -p+mul/lue[ II,,uo sin Ay vs shock strength PJP,, for h = K. 

, Werner ( A  = - 1); - - -, Ribner. 

For aK/h,u = 1 the method of steepest descents cannot be applied to I,. However, 
i t  will be shown in $9  that for this case I, can be expressed in the simple form: 

Ia = - J 1 ( h p )  i- sin ( K Q ~ ~ ) ,  ( a ~ / h p  = 1). (8.6) 
Thus, for OIK/h,U = 1, 

+c, [ "I sin(Kgogt) I . (8.7) 

As r approaches 00, p+trans dies out as (APT)+ for aK/h,u =# 1, and as (APT)-* 
for ~K/A,U  = 1. The remaining term p+w vanes sinusoidally in time with a fixed 
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amplitude and a phase which depends on the parameter a~/Ap.  The value of 
p+m should be predicted by the quasi-steady theories of Ribner (1953) and 
Chang (1957). Accordingly, Ribner's theory applied to  two vorticity waves 
oriented at ? 45' to the mean flow direction is compared with the present theory 
for the equivalent case of K = A (square vortex cells). For this configuration 
a ~ / A p  > 1. In  figure 4, the amplitude of p+m a,/ I uoI II,,a, is given as a function of 
shock strength PJP, for both Ribner's theory and the present determination. 
It is evident from this comparison that the approximation A = - 1 (which aside 
from the linearization of the problem is the only one made) is applicable even for 
shock strengths as high as ten. 

9. Solutions for small values of h p ~  

To complete the analysis a representation is sought which describes p+(y,7) 
near the origin but which can be extended to values of 7 for which the asymp- 
totic solutions first become valid. 

The cme aK/Ap > 1 

From the asymptotic results for I, and Ip it is known that I,, Is consist of a 
transient term which approaches zero as T + 03 and a sine term of fixed amplitude. 
If two new functions Id, ID are defined by subtracting out the sinusoidal com- 
ponents of I, and la, i.e. 

I at = I  a - ~ [ , - ~ ~ - ~ ) 2 ) g . n ( . K 7 )  AjL (9.1 A) 

and (9.1 B) 

then Iat, IpB1 are damped oscillatory functions approaching zero as 7 -+ 03. For 
such functions a method of expansion due to Cambi (1956) is particularly well- 
suited. 

A new transform function is defined as follows: 

Iff (7)  is equal to the nth-order Bessel function J , ( h p ~ ) ,  we obtain the simple 

A[J,(Ap.r)] = e-,q. (9.3) 
relation 

This result is applied by first obtaining the A transform of Ial 
A[I,,] = Ap cosh qfd (Ap sinh q )  

where b, = 2 E ) 2 [ 1 - { 1 - e ) 2 r ] - 1 7  d, = 

Dividing the denominator of equation (9.4) directly into the numerator, A[IJ 
may be expressed as a series in e-nq, 
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the inversion of which follows from equation (9.3), 

where fa1 = b x ,  

fa3 = - (',fa1 - ba - 1 ), 

f a 5  = - ( d a t a 3  +fa1 - 11, 

f a n  = - (dafa(n-2) +fa(n--l)) (n 2 719 

with corresponding expressions holding for Ipl. 
Thereason for the particular choice of I,$ now becomes more evident. In  

working with an expansion in J,(A,uT) it  was desired to apply this expansion to  a 
function whose behaviour was not very different from the Bessel function (both 
-Iat and J,(Ap7) are damped oscillatory functions). 

The case cxK/h ,u  < 1 

For this case we have found that [Ia],+w approaches a sine wave of unit ampli- 
tude but shifted in phase from the original disturbance. For this case then, we 
conatruct Ial by subtracting out only the sine component, giving 

i%K I,, = la - -sin ( E K ~ ) ,  
AP 

taking note of the fact that now 

Repetition of the procedure for aK/A,u > 1 yields an expression for Iat similar to 
equation (9.6) with 

Iat, of course, remains unchanged since p > p for all shock strengths. Although 
Ial no longer goes to zero as before, d, is sufficiently small to ensure good conver- 
gence properties for the expansion. 

The case a ~ / h p  = 1 

This case is contained in both the previous cases and we have 

b, = 1, d, = 1, ,fa1 = 0, f a n  = 0 ( n  > 1).  

Ial is then simply I,t = -4(AP7),  

and I, reduces to the form given in equation (8.6). 
In  terms of I& Ipl the pressure disturbance is given by 

(9.9) 

(9.10) 
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10. Local shock velocity perturbation 

boundary condition equation (4.1 B) written in the form 
The non-dimensional shock velocity @t/lSUol may be obtained from the 

Substitution of SU- and p+ results in the expression 

(10.1) 

(10.2) 

0.1 1 10" 

aii h oa 
- 

hp I (a;-D$ 

FIGURE 5. Phase 0 and amplitude G of @,//SUal vs aklhp for shock strength 
pJPa = 1.514, = 2.085. 

where 

The amplitude C and phase angle 8 are plotted in figure 5 C Z K / ~ ~  for a shock - -  
strength of Pl/Po = 1.514. At this shock strength the time variation of 

P+tra*sU1/ I uo I r I Z l U 0  sin 

is computed from equations (8.5) and (8.7) for large T and from equation (9.10) 
for small T. The results are plotted in figure 6 for a ~ / h p  = 8 and 2.085, and in 
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aK/A,u = 1, KIA = 112085 

-. I .  

I \  

II- 
I /  ’\\ : uodl- crKT1/2.n \ 

I ’. I 
i 3 $%%, / 4  

\ t  
\ I  * I  
\ ,  

$ 1  

, I  ,-* 
, I  -’ 

t, ; 

FIGURE 7. Transient component of pressure disturbance immediately behind shock va 
time for ak/hu = 1, pI/p,, = 1.514, M,, = 1.2. - , Bessel function expansion ; 
_ _ - -  , aaymptotic expression. 

FIGURE 8. Transient component of pressure disturbance immediately behind shock 
for APT < 1 (initial behaviour), h = K ,  and different shock strengths. 
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figure 7 for C ~ K / ~ , L L  = 1. The value of 2.085 was chosen since at this value h = K. 

It is interesting to  note that when h = K (i.e. square vortex cells), the maximum 
magnitude of p+trans is an order of magnitude greater than the amplitude of 
P + ~ .  I n  figure 8 the time variation of p+t~,,/(lsUol/Do)sinhy for h = K a t  
shock strength from 1.514 to 6.005 is plotted. Since p+trans is normalized with 
respect to we can see from figure 8 that, in this range of shock strengths, the 
transient pressure component rises in magnitude roughly in proportion to the 
shock strength. 

11. Shock displacement for a single column of vortices 
The above solution can be used to solve a second problem which is of some 

interest, namely the convection through a shock of a single column of vortex 
cells parallel to the y-axis. For this case the upstream disturbance is specified by 

- 
uo = vo = 0 (0 2 U0t-X, Do,t-z 2 ( 7 f / K )  = 41); 

1.2 

1.0 
0.8 
0.6 
0.4 

0.2 2 3 4 

rlotll 
- - I  

W 
1 

0 
-02 
-04 

-1.4L 
FIGURE 9. Shock displacement and pressure disturbance for a single column of 

vortices, with U K ~ A ~  = 1, A/K = 2.085, FJP,, = 1.514, M ,  = 1.2. 

Calling the shock displacement for this case $jz we have by simple superposition 

7kP = $t(Y, t )  + 1cr(Y, t - ~ P ~ O ) ,  (11.2) 

$t being the displacement velocity found previously for the semi-infinite vortex 
field. Integration of equation (11.2) yields the displacement @jz which is plotted 
in figure 9 _ _  together with p~~, l t ransal / luol~Izlaosinhy as a function of time for 
C X K / ~ , L L  = 1, p,/P0 = 1.514. 

This work was completed at the Johns Hopkins University and was supported 
by the United States Air Force under contract AF 18(600)-757. A more detailed 
discussion of the problem appears in Werner (1959). 
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